Course theme

Type of course

Banner
Banner

Controlling Scaling in Groundwater Reserve Osmosis – Minimizing Antiscalant Consumption

  • 19 April, 2023
  • 14:45
  • IHE Delft, Membrane Science and Technology
  • Prof. Walter van der MeerProf. Maria Kennedy
  • Dr. Sergio Salinas RodriguezDr. Antoine Kemperman

Antiscalants are well known for preventing the precipitation of sparingly soluble compounds such as calcium carbonate in reverse osmosis (RO) applications, but it is unclear whether they can also inhibit calcium phosphate scaling. Furthermore, a reliable method to determine the optimum antiscalant dose in RO is currently not available. The main objectives of this study were: i) to optimize the dosing of antiscalants and minimize antiscalant consumption in RO systems, and ii) to investigate the performance of antiscalants in preventing calcium phosphate scaling in RO processes. A dosing algorithm was investigated to minimize antiscalant consumption for calcium carbonate in different RO plants. Furthermore, the effectiveness of several commercial antiscalants (from different suppliers) in preventing calcium phosphate scaling was evaluated using pilot scale RO measurements and using a once-through laboratory scale RO system, which was developed in this research study.

The dosing algorithm proved to be a useful tool in identifying real-time optimum antiscalant doses required to prevent scaling for a given RO recovery. With the implementation of the dosing algorithm, the consumption of antiscalant in the RO plants was reduced by 85-90%. It was revealed that the feedwater chemistry, specifically the presence of phosphate and humic substances, plays a significant role in antiscalant dose reduction. For example, antiscalant was not required at all for a RO plant in the Netherlands as calcium carbonate scaling was prevented by the phosphate and humic substances naturally present in the RO feed. Furthermore, the amorphous phase of calcium phosphate was found to be responsible for flux decline in RO, for which the tested antiscalants were unable to provide acceptable inhibition, as flux decreased by at least 15% in less than 24 hours with each antiscalant. Consequently, further research is required, in collaboration with antiscalant suppliers, to develop and test antiscalants that are capable of preventing amorphous calcium phosphate scaling in RO systems.

Shaperesearcher
Researcher

Muhammad Nasir Mangal

readmore
shape Banner
We provide a disciplinary and multidisciplinary research programme aimed at advanced understanding of environmental problems and advanced training of PhD candidates in this field.
More information
shape Banner
Here you will find a selection of international events related to the socio-economic and natural sciences of the environment.
View our events